miércoles, 17 de mayo de 2017

conjuntos



Los conjuntos pueden ser finitos o infinitos. El conjunto de los números naturales es infinito, pero el conjunto de los planetas en el Sistema Solar es finito (tiene ocho elementos). Además, los conjuntos pueden combinarse mediante operaciones, de manera similar a las operaciones con números.
Los conjuntos son un concepto primitivo, en el sentido de que no es posible definirlos en términos de nociones más elementales, por lo que su estudio puede realizarse de manera informal, apelando a la intuición y a la lógica. Por otro lado, son el concepto fundamental de la matemática: mediante ellos puede formularse el resto de objetos matemáticos, como los números y las funciones, entre otros. Su estudio detallado requiere pues la introducción de axiomas y conduce a la teoría de conjuntos.

lunes, 24 de abril de 2017

Polinomios

En Matemáticas un polinomio es una expresión matemática  constituida por una suma finita de productos entre variables (valores no determinado o desconocido) y constante (números fijos llamados coeficiente).
Las variables pueden tener exponentes de valores definidos naturales incluido el cero y cuyo valor máximo se conocerá grado del polinomio.   En términos más simples, un polinomio es una suma de monomios.
Es frecuente el término polinómico (ocasionalmente también el anglicismo polinomial), como adjetivo, para designar cantidades que se pueden expresar como polinomios de algún parámetro, como por ejemplo: tiempo polinómico, etc.
Los polinomios son objetos muy utilizados en matemáticas y en ciencia. En la práctica, son utilizados en cálculo análisis matemático para aproximar cualquier función derivable; las ecuaciones polinómicas y las funciones polinómicas tienen aplicaciones en una gran variedad de problemas, desde la matemática elemental y el álgebra hasta áreas como la físicaquímicaeconomía y las ciencias sociales.
En álgebra abstracta, los polinomios son utilizados para construir los anillos de polinomios, un concepto central en teoría de números algebraicos y geometría algebraica.